Dynamic Local Search for Clustering with Unknown Number of Clusters
نویسندگان
چکیده
Dynamic clustering problems can be solved by finding several clustering solutions with different number of clusters, and by choosing the one that minimizes a given evaluation function. This kind of brute force approach is general but not very efficient. We propose a new dynamic local search that solves the number and location of the clusters jointly. The algorithm uses a set of basic operations, such as cluster addition, removal and swapping. The clustering is found by the combination of trial-and-error approach of local search, and the local optimization capability of the GLA. The algorithm finds the results 30 times faster than the brute force approach.
منابع مشابه
خوشهبندی خودکار دادهها با بهرهگیری از الگوریتم رقابت استعماری بهبودیافته
Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...
متن کاملA Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems
In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...
متن کاملروش نوین خوشهبندی ترکیبی با استفاده از سیستم ایمنی مصنوعی و سلسله مراتبی
Artificial immune system (AIS) is one of the most meta-heuristic algorithms to solve complex problems. With a large number of data, creating a rapid decision and stable results are the most challenging tasks due to the rapid variation in real world. Clustering technique is a possible solution for overcoming these problems. The goal of clustering analysis is to group similar objects. AIS algor...
متن کاملDynamic local search algorithm for the clustering problem
Dynamic clustering problems can be solved by finding several clustering solutions with different number of clusters, and by choosing the one that minimizes a given evaluation function value. This kind of brute force approach is general but not very efficient. We propose a dynamic local search that solves the number and location of the clusters jointly. The algorithm uses a set of basic operatio...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002